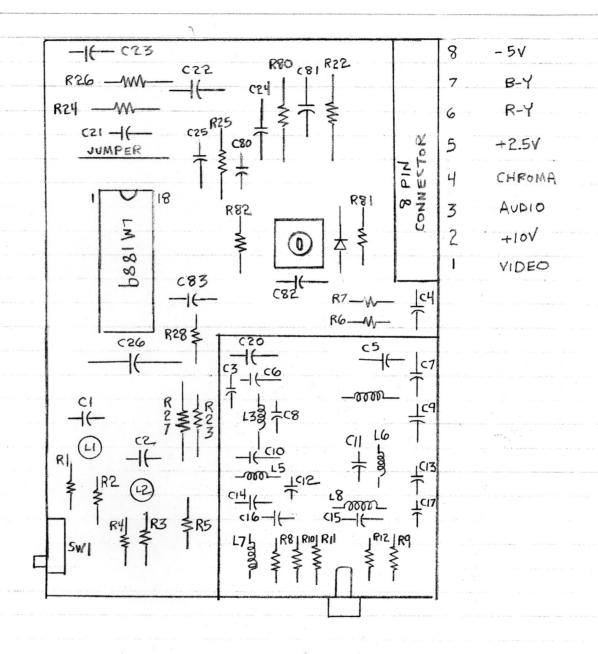
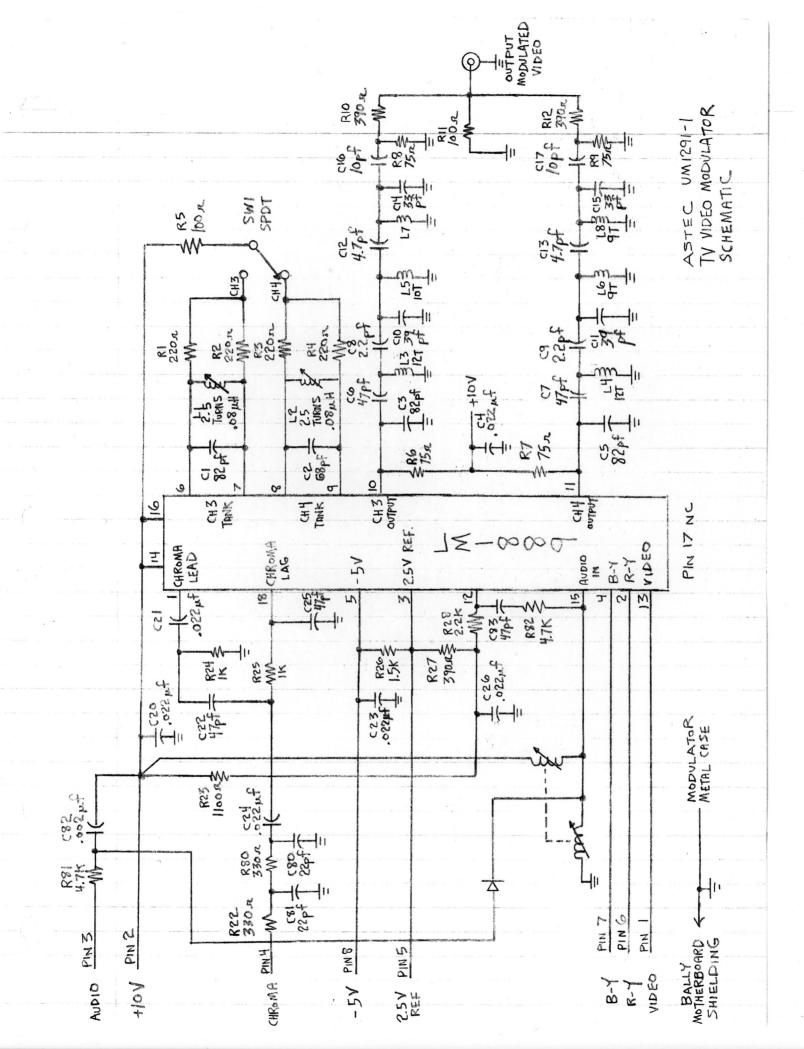

#### **ASTEC UM1291-1 RF Modulator**

Compilation of Information, October 31, 2017

The ASTEC UM1291-1 RF modulator is a direct replacement for the RF modulator that's inside the Bally Arcade/Astrocade. It looks like this:




One source where it can be purchased is from Electronics Surplus, here:


http://www.electronicsurplus.com/astec-um1291-1-rf-modulator

This document contains:

- 1) ASTEC UM1291-1 TV Video Modulator (Board Layout) Drawn by Michael Matte
- 2) ASTEC UM1291-1 TV Video Modulator (Schematic) Drawn by Michael Matte
- 3) **LM1889 TV Video Modulator** 4-Page except from National Semiconductor datasheet for the 18-pin chip used in the UM1291-1.
- 4) **ASTEC UM1291-1 Internal Product Specification** Four pages



ASTEC UM1291-1 TV VIDEO MODULATOR BOARD LAYOUT

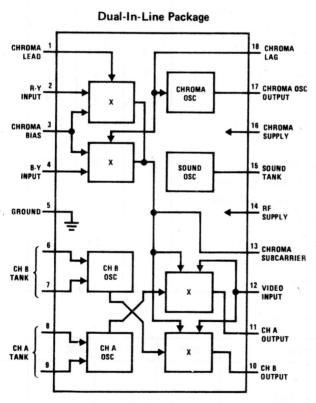


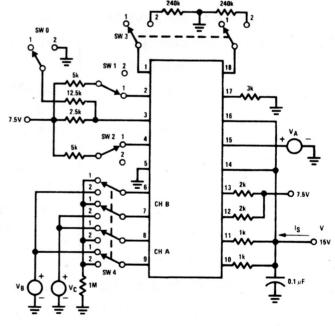
# Audio, Radio and TV Circuits

# LM1889 TV Video Modulator

# **General Description**

The LM1889 is designed to interface audio, color difference, and luminance signals to the antenna terminals of a TV receiver. It consists of a sound subcarrier oscillator, chroma subcarrier oscillator, quadrature chroma modulators, and RF oscillators and modulators for two low-VHF channels.


The LM1889 allows video information from VTR's, games, test equipment, or similar sources to be displayed on black and white or color TV receivers. When used with the MM57100 and MM53104, a complete TV game is formed.


#### **Features**

- dc channel switching
- 12V to 18V supply operation
- Excellent oscillator stability
- Low intermodulation products
- 5 Vp-p chroma reference signal
- May be used to encode composite video

# **Block Diagram**

### **DC Test Circuit**





Order Number LM1889N See NS Package N18A

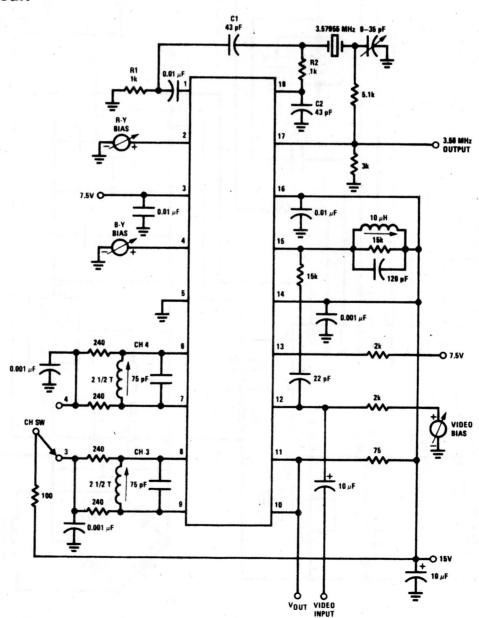
## **Absolute Maximum Ratings**

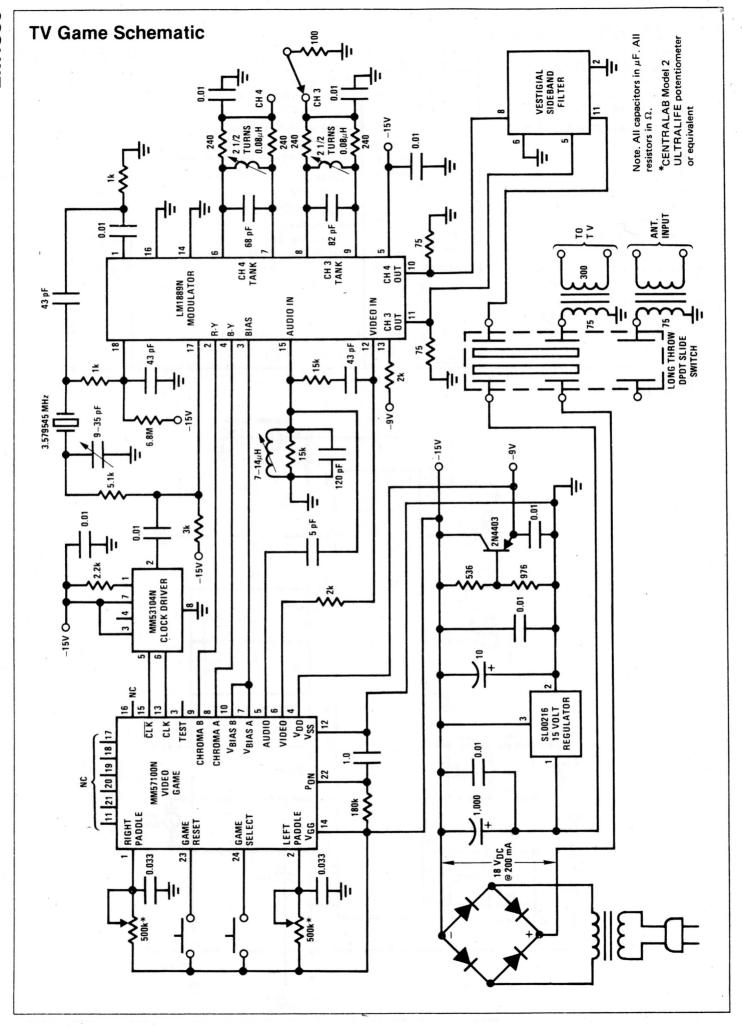
Supply Voltage V14, V16 max 19 V<sub>dc</sub> 1390 mW Power Dissipation Package (Note 1)  $0^{\circ}$ C to  $+70^{\circ}$ C Operating Temperature Range -55°C to +150°C Storage Temperature Range 10 mA<sub>dc</sub> Chroma Osc Current 117 max ±5 V<sub>dc</sub> (V16-V15) max (V14-V10) max (V14-V11) max 7 V 300°C Lead Temperature (Soldering, 10 seconds)

### DC Electrical Characteristics (dc Test Circuit, All SW Normally Pos. 1, VA = 15V, VB = VC = 12V)

| PARAMETER                                                   | CONDITIONS                                                                                                         | MIN  | TYP  | MAX  | UNITS |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------|------|------|-------|
| Supply Current, IS                                          | to the contract of the second                                                                                      | 20   | 35   | 45   | mA    |
| Sound Oscillator, Current Change, $\Delta I_{15}$           | Change Vд From 12.5V to                                                                                            | 0.3  | 0.6  | 0.9  | mA    |
| Chroma Oscillator Balance, V17                              |                                                                                                                    | 9.5  | 11.0 | 12.5 | V     |
| Chroma Modulator Balance, V13                               |                                                                                                                    | 7.0  | 7.4  | 7.8  | V     |
| R-Y Modulator Output Level, $\Delta$ V13                    | SW 3, Pos. 2, Change SW 1<br>From Pos. 1 to Pos. 2                                                                 | 0.6  | 0.9  | 1.2  | ٧     |
| B-Y Modulator Output Level, $\Delta$ V13                    | SW 3, Pos. 2, Change SW 2<br>From Pos. 1 to Pos. 2                                                                 | 0.6  | 0.9  | 1.2  | ٧     |
| Chroma Modulator Conversion Ratio, $\Delta V 13/\Delta V 3$ | SW 3, Pos. 2, Change SW 0<br>From Pos. 1 to Pos. 2. Divide $\Delta V13$ by $\Delta V3$                             | 0.45 | 0.70 | 0.95 | V/V   |
| Ch. A Oscillator "OFF" Voltage, V8, V9                      | SW 4, Pos. 2                                                                                                       | 0.5  | 1.5  | 3.0  | V     |
| Ch. A Oscillator Current Level, Ig                          | V <sub>B</sub> = 12V, V <sub>C</sub> = 13V                                                                         | 2 5  | 3.5  | 5    | mA    |
| Ch. B Oscillator "OFF" Voltage, V6, V7                      |                                                                                                                    | 0.5  | 1.5  | 3.0  | V     |
| Ch. B Oscillator Current Level, I6                          | SW 4, Pos. 2, V <sub>B</sub> = 12V,<br>V <sub>C</sub> = 13V                                                        | 2.5  | 3.5  | 5    | mA    |
| Ch. A Modulator Conversion Ratio,<br>ΔV11/(V13–V12)         | SW 1, SW 2, SW 3, Pos. 2,<br>$V_B = 12V$ , Change $V_C$ From<br>13V to 11V For $\Delta V11$ Divide<br>By $V13-V12$ | 0.40 | 0.55 | 0.70 | V/V   |
| Ch. B Modulator Conversion Ratio,<br>ΔV10/(V13–V12)         | All SW, Pos. 2, V <sub>B</sub> = 12V,<br>Change V <sub>C</sub> From 13V to 11V<br>Divide as Above                  | 0.40 | 0.55 | 0.70 | V/V   |

## AC Electrical Characteristics (ac Test Circuit, V = 15V)


| PARAMETER                           | CONDITIONS                                      | MIN | TYP | MAX | UNITS |
|-------------------------------------|-------------------------------------------------|-----|-----|-----|-------|
| Chroma Oscillator Output Level, V17 | C <sub>LOAD</sub> ≤ 20 pF                       | 4   | 5   |     | Vp-p  |
| Sound Carrier Oscillator Level, V15 | Loaded by RC Coupling<br>Network                | 2   | 3   | 4   | Vp-p  |
| Ch. 3 RF Oscillator Level, V8, V9   | Ch. Sw. Pos. 3, f = 61.25 MHz,<br>Use FET Probe | 200 | 350 | ž   | mVp-p |
| Ch. 4 RF Oscillator Level, V6,,V7   | Ch. Sw. Pos. 4, f = 67.25 MHz,<br>Use FET Probe | 200 | 350 |     | mVp p |


Note 1: For operation in ambient temperatures above 25°C, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 90°C/W junction to ambient.

| Design | Characteristics | (ac Test Circuit, V | = 15V |
|--------|-----------------|---------------------|-------|
|--------|-----------------|---------------------|-------|

| PARAMETER                                   | TYP        | UNITS  | PARAMETER                       | TYP                    | UNITS   |
|---------------------------------------------|------------|--------|---------------------------------|------------------------|---------|
| Oscillator Supply Dependence                |            |        | RF Modulator                    |                        |         |
| Chroma, f <sub>o</sub> = 3.579545 MHz       | 3          | Hz/V   | Conversion Gain, f = 61.25 MHz, | 1.                     | 1       |
| Sound Carrier, RF                           | See Curves |        | V <sub>OUT</sub> /(V13-V12)     | 10                     | mVrms/\ |
| Oscillator Temperature Dependence (IC Only) |            | - 4    | 3.58 MHz Differential Gain      | 5                      |         |
| Chroma                                      | 0.05       | ppm/°C | Differential Phase              | 3                      | degree  |
| Sound Carrier                               | 15         | ppm/°C | 2.5 Vp-p Video, 87.5% mod.      |                        |         |
| RF                                          | -50        | ppm/°C | Output Harmonics Below Carrier  |                        |         |
| Chroma Oscillator Output, Pin 17            |            |        | 2nd, 3rd                        | -12                    | d       |
| tRISE, 10-90%                               | 20         | ns     | 4th and above                   | -20                    | . d     |
| tFALL, 90-10%                               | 30         | ns     | Input Impedances                | . 7                    | _       |
| Duty Cycle (+) Half Cycle                   | 51         | %      | Chroma Modulator, Pins 2, 4     | F001-//2 + F           | 1.4     |
| (-) Half Cycle                              | 49         | %      | RF Modulator, Pin 12            | 500k//2 pF<br>1M//2 pF |         |
| RF Oscillator Maximum Operating Frequency   | 100        | MHz    | Pin 13                          | 250k//3.5 pF           |         |
| (Temperature Stability Degraded)            |            |        |                                 | 255K//5.5 pi           |         |
| Chroma Modulator (f = 3.58 MHz)             |            |        |                                 |                        |         |
| B-Y Conversion Gain V13/(V4-V3)             | 0.6        | Vp-p/V |                                 |                        |         |
| R-Y Conversion Gain V13/(V2-V3)             | 0.6        | Vp-p/V |                                 |                        |         |
| Gain Balance                                | ±0.5       | dB     |                                 | -                      |         |
| Bandwidth                                   | See Curve  |        |                                 |                        |         |

# **AC Test Circuit**

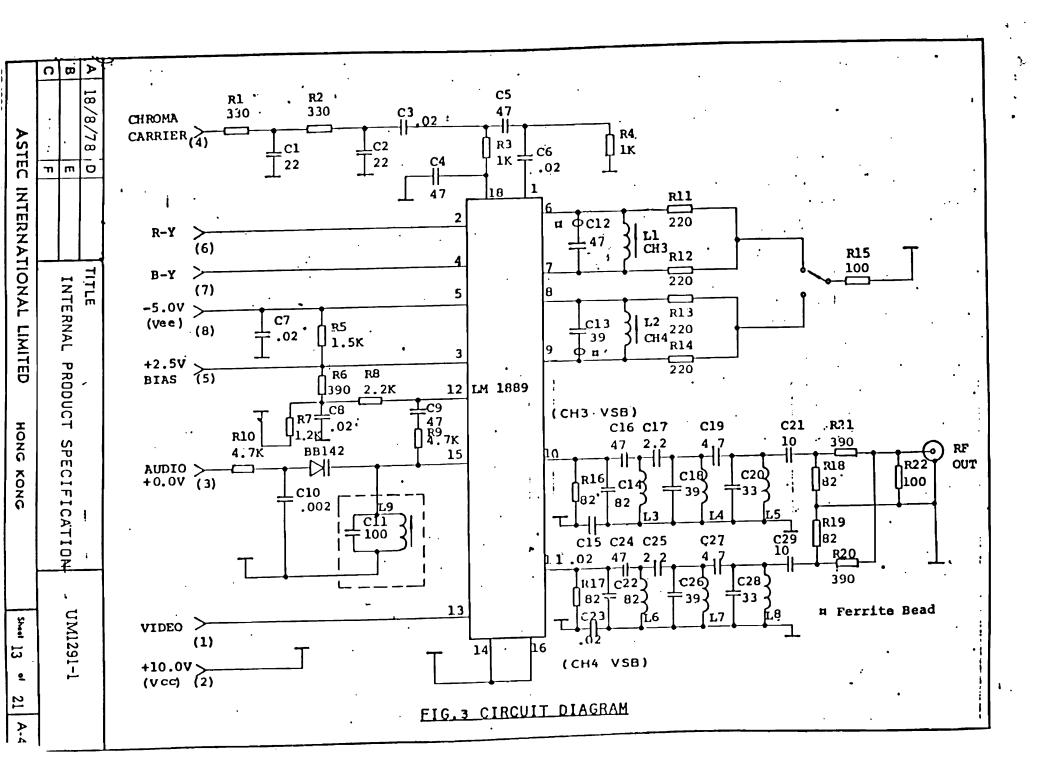




AN OFFSET BETWEEN PIN 12 AND PIN 13 WILL PRODUCE AN RF CARRIER AT PIN 10 OR 11 DEPENDING ON THE CHANNEL SELECTED. RF MODULATION, IN THIS CASE, IS ACHIVED WITH PIN 12 SET AT A DC REFERENCE AND VIDEO SIGNAL APPLIED TO PIN 13.

FEEDING A CHROMA SUBCARRIER THROUGH A LEAD-LAG NETWORKS TO PIN 1 AND 18 DEFINES A QUADRATURE PHASE RELATIONSHIP BETWEEN THESE TWO PINS. - THESE THE QUADRATURE PHASE AT PIN 1 AND 18 ARE DEFINED AS THE COLOR DIFFERENCE AXES R-Y AND B-Y. A SIGNAL AT PIN 2 (R-Y) WILL GIVE A CHROMINANCE SUBCARRIER OUTPUT FROM THE MODULATOR WITH A RELATIVE PHASE OF .90° COMPARED TO THE SUBCARRIER OUTPUT PRODUCED BY A SIGNAL AT PIN 4 (B-Y). THE MAGNITUDE OF THE CHROMINANCE SUBCARRIER OUTPUT IS DETERMINED BYENTHE DIFFERENCE IN DC LEVEL BETWEEN PIN 2 AND 3 (OR. PIN 4 AND 3), WHERE PIN 3 IS DC BIASED AT A REFERENCE LEVEL. THE PHASE OF THE SUBCARRIER IS CHANGED BY .180° WHEN THE POLARITY OF THE SIGNAL AT PIN 2 (OR 4) IS CHANGED WITH RESPECT TO THAT AT PIN 3. WHEN SIMULTANEOUS SIGNALS EXIST AT PIN 2 AND 4. THE . SUBCARRIER OUTPUT LEVEL AND PHASE WILL BE THE VECTOR SUM OF THE QUADRATURE COMPONENTS, PRODUCED BY PIN 2 AND 4. THIS SUBCARRIER IS INTERNALLY CONNECTED TO PIN 13 FOR RF MODULATION.

L9 AND C11 FORM THE TANK CIRCUIT OF THE AUDIO SUBCARRIER OSCILLATOR. FREQUENCY DEVIATION IS ACHIEVED BY SWITCHING A SMALL VALUE - CAPACITOR TO GROUND. THIS IS DONE BY VARYING THE DC VOLTAGE TO THE ANDDE OF THE VARACTOR DIODE.


THE LC NETWORKS CONNECTED TO PIN 10 AND 11 FORMS THE VESTIGIAL SIDEBAND FILTER OF CHANNEL 3 AND 4 RESPECTIVELY.

- 3.2.2 ELECTRICAL CHARACTERISTICS
- 3.2.2.1 ABSOLUTE MAXIMUM RATINGS.

THE MAXIMUM VOLTAGE APPLIED BETWEEN ANY PIN AND CASE SHOULD BE WITHIN - 18V TO +15V.

3.2.2.2 CHARACTERISTICS

| A 18/8/78 | · O -       | TITLE                          |                      |
|-----------|-------------|--------------------------------|----------------------|
| В         | E           | 1                              |                      |
| С         | F           | INTERNAT PRODUCT SPECIFICATION | UM1291-1             |
| AST       | TEC INTERNA | TIONAL LIMITED HONG KONG       | Sheet _4 of 21   A-4 |



| 3.2.2.4 | ALIGNMENT | CHART |
|---------|-----------|-------|
| 3.2.2.4 | ALIGNMENI | CHARI |

| ST               | <u>EP</u> | COIL TO BE |                        | UNTIL THE FOLLOWING REQUIREMENT IS MET     |
|------------------|-----------|------------|------------------------|--------------------------------------------|
| СНЗ              | 1         | L1         | ADJUST BRASS SLUG      | 61.25MHZ.                                  |
| CH4              | 2         |            |                        | 67.25MHZ.                                  |
| Снз <sup>‡</sup> | 3         | Ľ9         | ADJUST FERRITE<br>CORE | 4.5MHZ.                                    |
| ĊНЗ              | .4A       | L4         | KNIFE THE COIL.        | THE PASS BAND CENTRE IS MOVED TO 63.50MHz. |
|                  | B         | Ls         | KNIFE THE COIL         | THE PASS BAND IS AS FLAT AS POSSIBLE.      |
|                  | · c       | L3         | KNIFE THE COIL         | THE PASS BAND IS AS FLAT AS POSSIBLE.      |
|                  | •         | •          |                        | •                                          |
| . •              | D         | . L4 `     |                        | THE PASS BAND IS WITHIN SPEC.              |
|                  | E         | L5         | KNIFE THE COIL         | THE PASS BAND IS WITHIN SPEC.              |
| CH4              | 5 A       | L7         | KNIFE THE COIL         | THE PASS BAND CENTRE IS MOVED TO 69.50MHZ. |
|                  | <b>B</b>  | Ls         | KNIFE THE COIL         | THE PASS BAND IS AS<br>FLAT AS POSSIBLE.   |
| •                | c         | L6         | KNIFE THE COIL         | THE PASS BAND IS AS FLAT AS POSSIBLE.      |
|                  | . D       | L7         | KNIFE THE COIL         | THE PASS BAND IS WITHIN SPEC.              |
|                  | E         | <b>L8</b>  | KNIFE THE COIL         | THE PASS BAND IS WITHIN SPEC.              |

\* THE SOUND INPUT IS CFFSET TO +0.0 V W.R.T. GROUND SEE SHEET 18

| :<br>ا ي وا | <b>\$</b> )*: | ACTE    | CINT | ERNATIONAL LIMITED HONG K | ONG   Sheet 6 of 21 A-4 |
|-------------|---------------|---------|------|---------------------------|-------------------------|
|             | C             |         | F    | THIEMINE PRODUCT SIEC     | TI TON TON              |
|             | æ             |         | E    | INTERNAL PRODUCT SPEC     | TEICATION UM1291-1      |
| 1           | Α             | 18/8/78 | اه   | TITLE                     |                         |

THE MODULE IS DESIGNED TO WORK AT 2 SUPPLIES WHERE ONE IS +10V (VCC) WHILE THE OTHER IS - 5V (VEE).

THE IC GROUND IS TIED TO - 5V WHILE THE IC SUPPLY IS +10V. THE MODULATION TRANSFER CHARACTERISTIC WILL BE NEGATIVE, I.E. A POSITIVE GOING SIGNAL INPUT WILL CAUSE A DECREASE IN RF OUTPUT LEVEL.

THE PEAK RF OUTPUT IS DEFINED WITH INPUT GROUNDED (OV). FIG 4 DEFINES A TYPICAL TRANSFER CHARACTERISTIC.

TABLE 1 DEFINES OTHER VARIOUS PARAMETERS THAT THE MODULATOR SHALL MEET.

#### 3.2.2.3 ALIGNMENT PROCEDURE

- A. CHANNEL FREQUENCY.

  USING ZERO BEAT METHOD. L1 AND L2 IS ADJUSTED

  TO GIVE 61.25MHZ (CH3) AND 67.25MHZ (CH4)

  RESPECTIVELY.
- B. SOUND SUBCARRIER.
  USING ZERO BEAT METHOD, L9 IS ADJUSTED FOR 4.5MHZ
  SOUND SUBCARRIER FREQUENCY.
- C. VSB FILTER.
  FOR CH3, L3, L4, L5 ARE ADJUSTED REPEATEDLY TO
  HAVE THE PASS BAND CENTRE AT ABOUT 63.50MHZ.
  AND THE BAND EDGES AT 60MHZ AND 66MHZ.
  FOR CH4, L6, L7, L8 ARE ADJUSTED REPEATEDLY TO
  HAVE THE PASS BAND CENTRE AT ABOUT 69.50MHZ AND
  THE BAND EDGES AT 66MHZ AND 72MHZ.

|                                    | JM1291-1 |  |
|------------------------------------|----------|--|
| C F INTERNAL PRODUCT SPECIFICATION |          |  |